Source: complex.mjs

  1. // @ts-check
  2. /**
  3. * @typedef {{real: number, imag: number}} Cobj
  4. * An object representing a complex number with real and imaginary parts.
  5. */
  6. /**
  7. * @typedef {Int8Array | Uint8Array | Uint8ClampedArray | Int16Array |
  8. * Uint16Array | Int32Array | Uint32Array | Float32Array | Float64Array |
  9. * BigInt64Array | BigUint64Array} TypedArray
  10. * A union type representing all possible TypedArrays.
  11. */
  12. /**
  13. * @template {Typed<TypedArray>} T
  14. * @typedef {T} Typed A generic type representing a TypedArray.
  15. */
  16. /**
  17. * @template T
  18. * @typedef {function(new:T, ...any)} Newable
  19. * A constructor type that can be instantiated with the `new` keyword.
  20. */
  21. /**
  22. * @typedef {function(new:Complex, number, number)} TC
  23. * A constructor for typeof Complex.
  24. * @param {number} [re=0] The real part of the complex number.
  25. * @param {number} [im=0] The imaginary part of the complex number.
  26. */
  27. /**
  28. * @template {Ctor<TC>} C
  29. * @typedef {C} Ctor A generic type representing a `Complex` constructor.
  30. */
  31. /**
  32. * @template {TC} C
  33. * @typedef {InstanceType<C>} Cinst
  34. * A generic type representing an instance of a constructor `Complex`.
  35. */
  36. /**
  37. * @template {Ctor<TC>} C
  38. * @typedef {Ctor<C> | {} | void} Cvoid
  39. * A union type representing either a constructor `Complex`, an object, or void.
  40. * Used to hint that a static method can also be invoked "bare".
  41. */
  42. /**
  43. * Type of callback Complex.compare().
  44. * @callback Compare
  45. * @param {Complex} a The first complex number to compare.
  46. * @param {Cobj} b The second complex number to compare.
  47. * @return {number} -1 if a < b, 0 if a == b, or +1 if a > b.
  48. */
  49. /**
  50. * An immutable complex number class with real and imaginary parts.
  51. * @name Complex
  52. * @class Complex
  53. */
  54. export default class Complex {
  55. /**
  56. * The cached hashcode for this complex number.
  57. * @type {number | null}
  58. */
  59. #hashCode = null;
  60. /**
  61. * The cached string representation for this complex number.
  62. * @type {string | null}
  63. */
  64. #$ = null;
  65. /**
  66. * Create a new instance of the Complex class.
  67. * @constructor
  68. * @param {number} [re=0] The real part of the complex number.
  69. * @param {number} [im=0] The imaginary part of the complex number.
  70. */
  71. constructor(re = 0, im = 0) {
  72. /**
  73. * The real part of the complex number.
  74. * @readonly
  75. * @const
  76. * @member {number}
  77. */
  78. this.real = +re || 0;
  79. /**
  80. * The imaginary part of the complex number.
  81. * @readonly
  82. * @const
  83. * @member {number}
  84. */
  85. this.imag = +im || 0;
  86. /**
  87. * The constructor function for this instance.
  88. * @type {Newable<this> & typeof Complex}
  89. */
  90. this.constructor;
  91. /**
  92. * The prototype object of this instance.
  93. * @type {this}
  94. */
  95. this.__proto__;
  96. /*
  97. * Define the real & imag properties of this Complex object as readonly.
  98. * And thus making class Complex itself immutable:
  99. */
  100. Object.defineProperties(this, Complex._IMMUTABLE);
  101. }
  102. /**
  103. * A property descriptor object that defines a property as read-only
  104. * by setting its attribute writable to false.
  105. * @protected
  106. * @static
  107. * @readonly
  108. * @const {PropertyDescriptor}
  109. */
  110. static _READONLY = Object.freeze({ writable: false });
  111. /**
  112. * Map of property descriptors that define the real & imag properties of a
  113. * Complex object as read-only; so instances of class Complex are immutable.
  114. * @protected
  115. * @static
  116. * @readonly
  117. * @const {PropertyDescriptorMap}
  118. */
  119. static _IMMUTABLE = Object.freeze({
  120. real: this._READONLY, imag: this._READONLY
  121. });
  122. /**
  123. * Property's name to check if an object is a TypedArray.
  124. * @protected
  125. * @static
  126. * @readonly
  127. * @const {'BYTES_PER_ELEMENT'}
  128. */
  129. static _TYPED = 'BYTES_PER_ELEMENT';
  130. /**
  131. * Static property's name to check if some constructor is of type Complex.
  132. * @protected
  133. * @static
  134. * @readonly
  135. * @const {'fromRI'}
  136. */
  137. static _METHOD = 'fromRI';
  138. /**
  139. * A Float64Array buffer used to store the binary representation of the
  140. * real or imaginary part of a complex number for hashcode computation.
  141. * @protected
  142. * @static
  143. * @readonly
  144. * @type {Float64Array}
  145. */
  146. static _hashFBuf = new Float64Array(1);
  147. /**
  148. * A Uint8Array buffer view that shares the same memory block as _hashFBuf,
  149. * used to access the individual bytes of the real or imaginary part of a
  150. * complex number for hashcode computation.
  151. * @protected
  152. * @static
  153. * @readonly
  154. * @type {Uint8Array}
  155. */
  156. static _hashIBuf = new Uint8Array(this._hashFBuf.buffer);
  157. /**
  158. * A complex number representing zero.
  159. * @static
  160. * @readonly
  161. * @const {Complex}
  162. */
  163. static ZERO = new this().resetCaches();
  164. /**
  165. * A complex number representing 1 + 0i.
  166. * @static
  167. * @readonly
  168. * @const {Complex}
  169. */
  170. static _1_0i = new this(1, 0).resetCaches();
  171. /**
  172. * A complex number representing -1 + 0i.
  173. * @static
  174. * @readonly
  175. * @const {Complex}
  176. */
  177. static _1_0i_neg = new this(-1, 0).resetCaches();
  178. /**
  179. * A complex number representing 0 + 1i.
  180. * @static
  181. * @readonly
  182. * @const {Complex}
  183. */
  184. static _0_1i = new this(0, 1).resetCaches();
  185. /**
  186. * A complex number representing 0 - 1i.
  187. * @static
  188. * @readonly
  189. * @const {Complex}
  190. */
  191. static _0_1i_neg = new this(0, -1).resetCaches();
  192. /**
  193. * Pi. Ratio of the circumference of a circle to its diameter.
  194. * @static
  195. * @readonly
  196. * @const {3.141592653589793}
  197. */
  198. static PI = /** @type {3.141592653589793} */ (Math.PI);
  199. /**
  200. * Tau. Ratio of the circumference of a circle to its radius (2pi).
  201. * @static
  202. * @readonly
  203. * @const {6.283185307179586}
  204. */
  205. static TAU = /** @type {6.283185307179586} */ (2 * this.PI);
  206. /**
  207. * The conversion factor from radians to degrees (180 / Math.PI).
  208. * @static
  209. * @readonly
  210. * @const {57.29577951308232}
  211. */
  212. static RAD_TO_DEG = /** @type {57.29577951308232} */ (180 / this.PI);
  213. /**
  214. * The conversion factor from degrees to radians (Math.PI / 180).
  215. * @static
  216. * @readonly
  217. * @const {.017453292519943295}
  218. */
  219. static DEG_TO_RAD = /** @type {.017453292519943295} */ (this.PI / 180);
  220. /**
  221. * The default maximum difference allowed when testing complex numbers.
  222. * @type {number}
  223. * @default
  224. */
  225. static #epsilon = 1E-8;
  226. /**
  227. * Get the default maximum difference allowed when testing complex numbers.
  228. * @static
  229. * @return {number} The maximum difference allowed.
  230. */
  231. static get epsilon() {
  232. return Complex.#epsilon;
  233. }
  234. /**
  235. * Set the default maximum difference allowed when testing complex numbers.
  236. * @static
  237. * @param {number} norm The max diff allowed. Must be > 0 and < 1.
  238. * @throws {RangeError} If epsilon to be set is <= 0 or >=1.
  239. */
  240. static set epsilon(norm) {
  241. if (norm <= 0 || norm >= 1)
  242. throw RangeError('Range must be between 0 & 1 (exclusive)!');
  243. Complex.#epsilon = +norm;
  244. }
  245. /**
  246. * Convert an angle in radians to degrees.
  247. * @static
  248. * @param {number} rad The angle in radians.
  249. * @return {number} The angle in degrees.
  250. */
  251. static toDeg(rad) {
  252. return rad * Complex.RAD_TO_DEG;
  253. }
  254. /**
  255. * Convert an angle in degrees to radians.
  256. * @static
  257. * @param {number} deg The angle in degrees.
  258. * @return {number} The angle in radians.
  259. */
  260. static toRad(deg) {
  261. return deg * Complex.DEG_TO_RAD;
  262. }
  263. /**
  264. * Callback for comparing 2 complex numbers by their real & imaginary parts.
  265. * @static
  266. * @param {Complex} a The first complex number to compare.
  267. * @param {Cobj} b The second complex number to compare.
  268. * @return {number} -1 if a < b, 0 if a == b, or +1 if a > b.
  269. */
  270. static compare(a, b) {
  271. return a.compareTo(b);
  272. }
  273. /**
  274. * Returns a new array with the elements sorted by their real value.
  275. * Numbers w/ same real value are then sorted by their imaginary value.
  276. * The original array or iterable is unchanged.
  277. * @static
  278. * @template {Cinst<TC>} I Instance of Complex type.
  279. * @param {Iterable<I>} z The original array or iterable.
  280. * @param {Compare} [sort=Complex.compare] The sorting callback.
  281. * @return {I[]} A new sorted array.
  282. */
  283. static sort(z, sort = Complex.compare) {
  284. return [...z].sort(sort);
  285. }
  286. /**
  287. * @template {Typed<TypedArray>} T Specific type of the passed TypedArray.
  288. * @overload
  289. * @param {T} arr The TypedArray to clone.
  290. * @return {T} A new TypedArray of same datatype containing
  291. * the elements of the input TypedArray.
  292. *
  293. */
  294. /**
  295. * @template A The type of elements in the Array or Iterable object.
  296. * @overload
  297. * @param {Iterable<A>} arr The Array or Iterable object to clone.
  298. * @return {A[]} A new Array containing the elements of the input Array
  299. * or Iterable object.
  300. */
  301. /**
  302. * @static
  303. * @param {T | Iterable<A>} arr Array, TypedArray or Iterable to clone.
  304. * @description Clones an Array, a TypedArray or an Iterable object
  305. * as an Array or TypedArray of same datatype.
  306. */
  307. static arrClone(arr) {
  308. return Complex._TYPED in arr ? arr.slice() : [...arr];
  309. }
  310. /**
  311. * Check if a function is a Complex datatype constructor.
  312. * @static
  313. * @template {Ctor<TC>} C Extends typeof Complex.
  314. * @param {Cvoid<C>} c The constructor function to check.
  315. * @return {c is Newable<Cinst<C>>}
  316. * True if param c is or inherits from Complex class.
  317. */
  318. static isComplex(c) {
  319. return !!c && Complex._METHOD in c;
  320. }
  321. /**
  322. * Get input constructor c if typeof Complex; or fallback to Complex.
  323. * @protected
  324. * @static
  325. * @template {Ctor<TC>} C Extends typeof Complex.
  326. * @template {Newable<Cinst<C>>} N Constructor for typeof Complex.
  327. * @param {Cvoid<C>} c The constructor function to verify.
  328. * @return {N} Param c if type Complex; otherwise a Complex constructor.
  329. */
  330. static _ctor(c) {
  331. return /** @type {N} */ (Complex.isComplex(c) ? c : this || Complex);
  332. }
  333. /**
  334. * Create a new instance of a given Complex constructor function.
  335. * @protected
  336. * @static
  337. * @template {Ctor<TC>} C Extends typeof Complex.
  338. * @param {Cvoid<C>} c An existing Complex constructor.
  339. * @param {*} args Real & imaginary number parts.
  340. * @return {Cinst<C>} A new instance of a complex number.
  341. */
  342. static _new(c, ...args) {
  343. return new (this._ctor(c))(...args);
  344. }
  345. /**
  346. * Return a complex number given values for the real & imaginary parts.
  347. * @static
  348. * @template {Ctor<TC>} C Extends typeof Complex.
  349. * @this {Cvoid<C>} Constructor for a Complex object or its subclass.
  350. * @param {number} [re=0] The real part.
  351. * @param {number} [im=0] The imaginary part.
  352. * @param {*} _args Extended parameters.
  353. * @return {Cinst<C>} The complex number of given real & imaginary parts.
  354. */
  355. static fromRI(re, im, ..._args) {
  356. return Complex._new(this, re, im, ..._args);
  357. }
  358. /**
  359. * Return a new complex number using given object's props real & imag.
  360. * @static
  361. * @template {Ctor<TC>} C Extends typeof Complex.
  362. * @this {Cvoid<C>} Constructor for a Complex object or its subclass.
  363. * @param {Cobj} z The Complex object to copy from.
  364. * @param {*} _args Extended parameters.
  365. * @return {Cinst<C>} Duplicate of the given Complex object.
  366. */
  367. static fromZ({ real, imag }, ..._args) {
  368. return Complex._new(this, real, imag, ..._args);
  369. }
  370. /**
  371. * Return a complex number given polar coordinates.
  372. * @static
  373. * @template {Ctor<TC>} C Extends typeof Complex.
  374. * @this {Cvoid<C>} Constructor for a Complex object or its subclass.
  375. * @param {number} mod The length of the complex number.
  376. * @param {number} rad The angle subtended by the number.
  377. * @param {*} _args Extended parameters.
  378. * @return {Cinst<C>} Complex of given length & orientation.
  379. */
  380. static fromPolar(mod, rad, ..._args) {
  381. const re = mod * Math.cos(rad), im = mod * Math.sin(rad);
  382. return Complex._new(this, re, im, ..._args);
  383. }
  384. /**
  385. * Return a complex number of a given size but random orientation.
  386. * @static
  387. * @template {Ctor<TC>} C Extends typeof Complex.
  388. * @this {Cvoid<C>} Constructor for a Complex object or its subclass.
  389. * @param {number} [mod=1] The length of the complex number.
  390. * @param {*} _args Extended parameters.
  391. * @return {Cinst<C>} Complex of given length & random orientation.
  392. */
  393. static fromRandom(mod = 1, ..._args) {
  394. const
  395. ang = Complex.TAU * Math.random(),
  396. re = mod * Math.cos(ang),
  397. im = mod * Math.sin(ang);
  398. return Complex._new(this, re, im, ..._args);
  399. }
  400. /**
  401. * Given an array of complex numbers return a new array containing a clone
  402. * of those that represent real numbers. The original array is unchanged.
  403. * @static
  404. * @template {Ctor<TC>} C Extends typeof Complex.
  405. * @this {Cvoid<C>} Constructor for a Complex object or its subclass.
  406. * @param {Iterable<Complex>} z The original array or iterable.
  407. * @param {number} [epsilon=Complex.epsilon] Max diffference allowed.
  408. * @param {*} _args Extended parameters.
  409. * @return {Array<Cinst<C>>} Array of Complex representing real numbers.
  410. */
  411. static filterRealRoots(z, epsilon = Complex.#epsilon, ..._args) {
  412. const ctor = Complex._ctor(this), r = [];
  413. for (const c of z)
  414. c.isReal(epsilon) && r.push(new ctor(c.real, 0, ..._args));
  415. return r;
  416. }
  417. /**
  418. * If the original array contains more than 1 element the new array is
  419. * returned with duplicates removed leaving just unique vales.
  420. * In all cases a clone is returned and the original array is unchanged.
  421. * @static
  422. * @template {Cinst<TC>} I Instance of Complex type.
  423. * @param {Iterable<I>} z The original array or iterable.
  424. * @param {number} [epsilon=Complex.epsilon] Max diffference allowed.
  425. * @return {I[]} A new array with duplicates removed.
  426. */
  427. static removeDuplicates(z, epsilon = Complex.#epsilon) {
  428. const zs = [...z], len = zs.length;
  429. if (len < 2) return zs; // Can't have duplicates, so exit now!
  430. const nz = [ zs.sort(Complex.compare)[0] ];
  431. var i = 0, idx = 0;
  432. while (++i < len) {
  433. const c = zs[i];
  434. if (!c.equals(nz[idx], epsilon)) nz.push(c), ++idx;
  435. }
  436. return nz;
  437. }
  438. /**
  439. * Compute the absolute value (modulus or magnitude) of this complex number.
  440. * @return {number} The absolute length value of this complex number.
  441. */
  442. abs() {
  443. return Math.sqrt(this.real * this.real + this.imag * this.imag);
  444. // return Math.hypot(this.real, this.imag); // Likely slower!
  445. }
  446. /**
  447. * Compute the squared absolute value of this complex number.
  448. * @return {number} The squared absolute value of this complex number.
  449. */
  450. abs_squared() {
  451. return this.real * this.real + this.imag * this.imag;
  452. }
  453. /**
  454. * Add another complex number or a real number to this complex number.
  455. * @param {Cobj | number} n The complex or real number to add.
  456. * @return {this} A new complex number representing the sum.
  457. */
  458. add(n) {
  459. const { constructor, real, imag } = this;
  460. return typeof n == 'object' ?
  461. new constructor(+n.real + real, +n.imag + imag) :
  462. new constructor(+n + real, imag);
  463. }
  464. /**
  465. * Calculate the inverse cosine of this complex number.
  466. * @return {this} A new complex number representing the result.
  467. */
  468. acos() {
  469. const z = this.squared().sub(1).sqrt().add(this).log().
  470. mult(Complex._0_1i_neg);
  471. return z.real < 0 && z.negate() || z;
  472. }
  473. /**
  474. * Calculate the inverse hyperbolic cosine of this complex number.
  475. * @return {this} A new complex number representing the result.
  476. */
  477. acosh() {
  478. const z = this.squared().sub(Complex._1_0i).sqrt().add(this).log();
  479. return z.real < 0 && z.negate() || z;
  480. }
  481. /**
  482. * Calculate the argument (phase) of this complex number in radians.
  483. * @return {number} The argument of this complex number in radians.
  484. */
  485. arg() {
  486. return Math.atan2(this.imag, this.real);
  487. }
  488. /**
  489. * Calculate the inverse sine of this complex number.
  490. * @return {this} A new complex number representing the result.
  491. */
  492. asin() {
  493. const t2 = this.squared().sub(Complex._1_0i).negate().sqrt();
  494. return this.mult(Complex._0_1i).add(t2).log().mult(Complex._0_1i_neg);
  495. }
  496. /**
  497. * Calculate the inverse hyperbolic sine of this complex number.
  498. * @return {this} A new complex number representing the result.
  499. */
  500. asinh() {
  501. return this.squared().add(Complex._1_0i).sqrt().add(this).log();
  502. }
  503. /**
  504. * Calculate the inverse tangent of this complex number.
  505. * @return {this} A new complex number representing the result.
  506. */
  507. atan() {
  508. const _01 = this.constructor.fromZ(Complex._0_1i);
  509. return _01.half().mult( _01.add(this).div( _01.sub(this) ).log() );
  510. }
  511. /**
  512. * Calculate the inverse hyperbolic tangent of this complex number.
  513. * @return {this} A new complex number representing the result.
  514. */
  515. atanh() {
  516. const _10 = this.constructor.fromZ(Complex._1_0i);
  517. return _10.add(this).div( _10.sub(this) ).log().half();
  518. }
  519. /**
  520. * Calculate the cube root of this complex number.
  521. * @return {this} A new complex number representing the result.
  522. */
  523. cbrt() {
  524. const { cbrt, atan2, cos, sin } = Math, mag = cbrt( this.abs() );
  525. var theta = atan2(this.imag, this.real);
  526. if (theta < 0) theta += Complex.TAU;
  527. return new this.constructor(cos(theta /= 3) * mag, sin(theta) * mag);
  528. }
  529. /**
  530. * Creates a copy of the same type as this complex instance.
  531. * Although it's unnecessary given a Complex object is already immutable.
  532. * @return {this} A new complex object with the same real and imaginary
  533. * values as this instance.
  534. */
  535. clone() {
  536. return new this.constructor(...this).resetCaches();
  537. }
  538. /**
  539. * Calculate the conjugate of this complex number.
  540. * @return {this} A new complex number representing the conjugate.
  541. */
  542. conj() {
  543. return new this.constructor(this.real, -this.imag);
  544. }
  545. /**
  546. * This method compares this complex number with another.
  547. * The main purpose of this is to define an appropriate sort order.
  548. * Returns:
  549. * Zero if the numbers are the same when using the equals method.
  550. * Negative if considered less than z.
  551. * Positive if considered larger than z.
  552. * @param {Cobj} z the complex number to compare with.
  553. * @return {number} -1, 0 or +1
  554. */
  555. compareTo(z) {
  556. return this.equals(z) ? 0 : this.real - z.real || this.imag - z.imag;
  557. }
  558. /**
  559. * Calculate the cosine of this complex number.
  560. * @return {this} A new complex number representing the result.
  561. */
  562. cos() {
  563. const t = this.mult(Complex._0_1i);
  564. return t.exp().add( t.negate().exp() ).half();
  565. }
  566. /**
  567. * Calculate the cosecant of this complex number.
  568. * @return {this} A new complex number representing the result.
  569. */
  570. cosec() {
  571. return this.sin().pow(-1);
  572. }
  573. /**
  574. * Calculate the hyperbolic cosecant of this complex number.
  575. * @return {this} A new complex number representing the result.
  576. */
  577. cosech() {
  578. return this.sinh().pow(-1);
  579. }
  580. /**
  581. * Calculate the hyperbolic cosine of this complex number.
  582. * @return {this} A new complex number representing the result.
  583. */
  584. cosh() {
  585. return this.exp().add( this.negate().exp() ).half();
  586. }
  587. /**
  588. * Returns the cotangent of this complex number.
  589. * @return {this} The cotangent of this complex number.
  590. */
  591. cot() {
  592. return this.cos().div( this.sin() );
  593. }
  594. /**
  595. * Returns the hyperbolic cotangent of this complex number.
  596. * @return {this} The hyperbolic cotangent of this complex number.
  597. */
  598. coth() {
  599. return this.cosh().div( this.sinh() );
  600. }
  601. /**
  602. * Returns the cube of this complex number.
  603. * @return {this} The cube of this complex number.
  604. */
  605. cubed() {
  606. const
  607. { constructor, real, imag } = this,
  608. re = real**3 - 3 * real * imag * imag,
  609. im = 3 * real * real * imag**4;
  610. return new constructor(re, im);
  611. }
  612. /**
  613. * Divides this complex number by another complex number or a scalar.
  614. * @param {(Cobj | number)} n The divisor.
  615. * @return {this} The quotient of the division.
  616. */
  617. div(n) {
  618. const { constructor, real, imag } = this;
  619. if (typeof n == 'object') {
  620. const
  621. { real: r, imag: i } = n,
  622. m = r*r + i*i;
  623. var
  624. re = (r * real + i * imag) / m,
  625. im = (r * imag - i * real) / m;
  626. }
  627. else var re = real / n, im = imag / n;
  628. return new constructor(re, im);
  629. }
  630. /**
  631. * Checks if this complex number is equal to another complex number within
  632. * a given tolerance.
  633. * @param {Cobj} z The other complex number to compare with.
  634. * @param {number} [epsilon=Complex.epsilon] The tolerance for equality.
  635. * @return {boolean} True if the two numbers are equal within the given
  636. * tolerance, false otherwise.
  637. */
  638. equals({ real, imag }, epsilon = Complex.#epsilon) {
  639. return Math.abs(this.real - real) < epsilon &&
  640. Math.abs(this.imag - imag) < epsilon;
  641. }
  642. /**
  643. * Returns the exponential of this complex number.
  644. * @return {this} The exponential of this complex number.
  645. */
  646. exp() {
  647. const
  648. a = Math.exp(this.real),
  649. b = Math.cos(this.imag),
  650. c = Math.sin(this.imag);
  651. return this.constructor.fromZ(Complex._0_1i).mult(c).add(b).mult(a);
  652. }
  653. /**
  654. * Generates a hashcode for this complex number.
  655. * @param {number} [hash=17] Optional initial seed for the hashcode.
  656. * @return {number} The hashcode for this complex number.
  657. */
  658. hashCode(hash = 0) {
  659. if (!hash && this.#hashCode != null) return this.#hashCode;
  660. hash = ~~hash || 17;
  661. for (const z of this) { // Iterate over [real & imag] values.
  662. Complex._hashFBuf[0] = z;
  663. for (const int8 of Complex._hashIBuf) hash = hash * 31 + int8 | 0;
  664. }
  665. return this.#hashCode = hash;
  666. }
  667. /**
  668. * Checks if this complex number is real within a given tolerance.
  669. * @param {number} [epsilon=Complex.epsilon] The tolerance for checking
  670. * if the imaginary part is zero.
  671. * @return {boolean} True if the imaginary part is zero within the given
  672. * tolerance, false otherwise.
  673. */
  674. isReal(epsilon = Complex.#epsilon) {
  675. return Math.abs(this.imag) <= epsilon;
  676. }
  677. /**
  678. * Checks if this complex number is zero within a given tolerance.
  679. * @param {number} [epsilon=Complex.epsilon] The tolerance for checking
  680. * if both the real and imaginary parts are zero.
  681. * @return {boolean} True if both the real and imaginary parts are zero
  682. * within the given tolerance, false otherwise.
  683. */
  684. isZero(epsilon = Complex.#epsilon) {
  685. return Math.abs(this.real) < epsilon && Math.abs(this.imag) < epsilon;
  686. }
  687. /**
  688. * Returns the natural logarithm of this complex number.
  689. * @return {this} The natural logarithm of this complex number.
  690. */
  691. log() {
  692. const re = Math.log( this.abs() );
  693. const im = this.real < 0 && !this.imag ? Complex.PI : this.arg();
  694. return new this.constructor(re, im);
  695. }
  696. /**
  697. * Multiplies this complex number by another complex number or a scalar.
  698. * @param {(Cobj | number)} n The multiplicand.
  699. * @return {this} The product of the multiplication.
  700. */
  701. mult(n) {
  702. const { constructor, real, imag } = this;
  703. if (typeof n == 'object') return new constructor(
  704. n.real * real - n.imag * imag,
  705. n.imag * real + n.real * imag
  706. );
  707. return new constructor(n * real, n * imag);
  708. }
  709. /**
  710. * Returns the half (divided by 2) of this complex number.
  711. * @return {this} Half of this complex number.
  712. */
  713. half() {
  714. return this.mult(.5);
  715. }
  716. /**
  717. * Returns the negation of this complex number.
  718. * @return {this} The negation of this complex number.
  719. */
  720. negate() {
  721. return this.mult(-1);
  722. }
  723. /**
  724. * Returns the normalization of this complex number.
  725. * @return {this} The normalization of this complex number.
  726. */
  727. norm() {
  728. return this.div( this.abs() );
  729. }
  730. /**
  731. * Returns the power of this complex number raised to another complex
  732. * number or a scalar.
  733. * @param {(Cobj | number)} n The exponent.
  734. * @return {this} Power of this complex number raised to given exponent.
  735. */
  736. pow(n) {
  737. return this.log().mult(n).exp();
  738. }
  739. /**
  740. * Returns the nth roots of this complex number (min 1).
  741. * @param {number} [n=1] The degree of the roots.
  742. * @return {this[]} An array containing the nth roots of this
  743. * complex number.
  744. */
  745. roots(n = 1) {
  746. const
  747. { constructor, real, imag } = this,
  748. delta = Complex.TAU / (n = ~~Math.abs(n) || 1),
  749. arg = Math.atan2(imag, real) / n,
  750. mod = Math.pow(this.modSq(), 1 / n);
  751. return Array.from(
  752. { length: n },
  753. (_, r) => constructor.fromPolar(mod, r * delta + arg)
  754. );
  755. }
  756. /**
  757. * Returns the sine of this complex number.
  758. * @return {this} The sine of this complex number.
  759. */
  760. sin() {
  761. const t1 = this.mult(Complex._0_1i).exp().mult(Complex._0_1i_neg);
  762. const t2 = this.mult(Complex._0_1i_neg).exp().mult(Complex._0_1i_neg);
  763. return t1.sub(t2).half();
  764. }
  765. /**
  766. * Returns the hyperbolic sine of this complex number.
  767. * @return {this} The hyperbolic sine of this complex number.
  768. */
  769. sinh() {
  770. return this.exp().sub( this.negate().exp() ).half();
  771. }
  772. /**
  773. * Returns the square of this complex number.
  774. * @return {this} The square of this complex number.
  775. */
  776. squared() {
  777. const
  778. { constructor, real, imag } = this,
  779. re = (real + imag) * (real - imag), // Same as: real*real - imag*imag
  780. im = 2 * real * imag;
  781. return new constructor(re, im);
  782. }
  783. /**
  784. * Returns the square root of this complex number.
  785. * @return {this} The square root of this complex number.
  786. */
  787. sqrt() {
  788. const
  789. { constructor, real, imag } = this,
  790. abs = this.abs(),
  791. re = Math.sqrt(.5 * (abs + real)),
  792. im = Math.sqrt(.5 * (abs - real));
  793. return new constructor(re, imag >= 0 ? im : -im);
  794. }
  795. /**
  796. * Subtracts another complex or a real number from this complex number.
  797. * @param {(Cobj | number)} n The subtrahend.
  798. * @return {this} The difference between the two numbers.
  799. */
  800. sub(n) {
  801. const { constructor, real, imag } = this;
  802. return typeof n == 'object' ?
  803. new constructor(real - n.real, imag - n.imag) :
  804. new constructor(real - n, imag);
  805. }
  806. /**
  807. * Returns the tangent of this complex number.
  808. * @return {this} The tangent of this complex number.
  809. */
  810. tan() {
  811. return this.sin().div( this.cos() );
  812. }
  813. /**
  814. * Returns the hyperbolic tangent of this complex number.
  815. * @return {this} The hyperbolic tangent of this complex number.
  816. */
  817. tanh() {
  818. return this.sinh().div( this.cosh() );
  819. }
  820. /**
  821. * Prints this complex number to the console.
  822. * @param {number} [precision=16] Number of significant digits to display.
  823. * @return {this} This complex number.
  824. * @chainable
  825. */
  826. print(precision) {
  827. console.log( this.$(precision) );
  828. return this;
  829. }
  830. /**
  831. * Returns a string representation of this complex number.
  832. * @param {number} [precision=16] Number of significant digits to display.
  833. * @param {string} [$=''] Extra info to append to the string representation.
  834. * @return {string} A string representation of this complex number.
  835. */
  836. $(precision = 0, $ = '') {
  837. if (!precision && !$ && this.#$ != null) return this.#$;
  838. const
  839. sgn = this.imag < 0 && '-' || '+',
  840. rep = this.real.toPrecision(precision ||= 16),
  841. imp = Math.abs(this.imag).toPrecision(precision);
  842. return this.#$ = `( ${rep} | ${sgn}${imp}j )${$}`;
  843. }
  844. /**
  845. * Returns a string representation of this complex number.
  846. * @return {string} A string representation of this complex number.
  847. */
  848. toString() {
  849. return this.$();
  850. }
  851. /**
  852. * Resets to default values both #hashCode & #$ internal caches.
  853. * @return {this} This complex number.
  854. * @chainable
  855. */
  856. resetCaches() {
  857. this.hashCode(17);
  858. this.$(16, '');
  859. return this;
  860. }
  861. /**
  862. * Returns the name of the constructor of this complex number.
  863. * @return {string} The name of the constructor of this complex number.
  864. */
  865. get [Symbol.toStringTag]() {
  866. return this.constructor.name;
  867. }
  868. /**
  869. * Converts this complex number to a primitive value.
  870. * @param {'default' | 'number' | 'string'} hint Type hint for conversion.
  871. * @return {number | string} The primitive value of this complex number.
  872. */
  873. [Symbol.toPrimitive](hint) {
  874. return hint == 'number' ? this.real : this.toString();
  875. }
  876. /**
  877. * Gets an iterator for the real and imaginary parts of this complex number.
  878. * @generator
  879. * @yield {number}
  880. * @return {IterableIterator<number>}
  881. * An iterator for the real and imaginary parts of this complex number.
  882. */
  883. *[Symbol.iterator]() {
  884. yield this.real;
  885. yield this.imag;
  886. }
  887. }
  888. /**
  889. * Compute the absolute value (modulus or magnitude) of this complex number.
  890. * @method mod
  891. * @memberof Complex
  892. * @instance
  893. * @return {number} The absolute length value of this complex number.
  894. * @description Alias of Complex::abs().
  895. */
  896. Complex.prototype.mod = Complex.prototype.abs;
  897. /**
  898. * Compute the squared absolute value of this complex number.
  899. * @method modSq
  900. * @memberof Complex
  901. * @instance
  902. * @return {number} The squared absolute value of this complex number.
  903. * @description Alias of Complex::abs_squared().
  904. */
  905. Complex.prototype.modSq = Complex.prototype.abs_squared;
  906. /**
  907. * Multiplies this complex number by another complex number or a scalar.
  908. * @method mul
  909. * @memberof Complex
  910. * @instance
  911. * @param {(Cobj | number)} n The multiplicand.
  912. * @return {this} The product of the multiplication.
  913. * @description Alias of Complex::mult().
  914. */
  915. Complex.prototype.mul = Complex.prototype.mult;
  916. // Freeze the Complex class to prevent further modifications to
  917. // its static properties & methods:
  918. Object.freeze(Complex);