Global

Members

epsilon

Get the default maximum difference allowed when testing complex numbers.
Source:

epsilon

Set the default maximum difference allowed when testing complex numbers.
Source:

Methods

$(precisionopt, $opt) → {string}

Returns a string representation of this complex number.
Parameters:
Name Type Attributes Default Description
precision number <optional>
16 Number of significant digits to display.
$ string <optional>
'' Extra info to append to the string representation.
Source:
Returns:
A string representation of this complex number.
Type
string

(protected) _ctor(c) → {N}

Get input constructor c if typeof Complex; or fallback to Complex.
Parameters:
Name Type Description
c Cvoid.<C> The constructor function to verify.
Source:
Returns:
Param c if type Complex; otherwise a Complex constructor.
Type
N

(protected) _new(c, …args) → {Cinst.<C>}

Create a new instance of a given Complex constructor function.
Parameters:
Name Type Attributes Description
c Cvoid.<C> An existing Complex constructor.
args * <repeatable>
Real & imaginary number parts.
Source:
Returns:
A new instance of a complex number.
Type
Cinst.<C>

abs() → {number}

Compute the absolute value (modulus or magnitude) of this complex number.
Source:
Returns:
The absolute length value of this complex number.
Type
number

abs_squared() → {number}

Compute the squared absolute value of this complex number.
Source:
Returns:
The squared absolute value of this complex number.
Type
number

acos() → {this}

Calculate the inverse cosine of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

acosh() → {this}

Calculate the inverse hyperbolic cosine of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

add(n) → {this}

Add another complex number or a real number to this complex number.
Parameters:
Name Type Description
n Cobj | number The complex or real number to add.
Source:
Returns:
A new complex number representing the sum.
Type
this

arg() → {number}

Calculate the argument (phase) of this complex number in radians.
Source:
Returns:
The argument of this complex number in radians.
Type
number

arrClone(arr)

Clones an Array, a TypedArray or an Iterable object as an Array or TypedArray of same datatype.
Parameters:
Name Type Description
arr T | Iterable.<A> Array, TypedArray or Iterable to clone.
Source:

asin() → {this}

Calculate the inverse sine of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

asinh() → {this}

Calculate the inverse hyperbolic sine of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

atan() → {this}

Calculate the inverse tangent of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

atanh() → {this}

Calculate the inverse hyperbolic tangent of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

cbrt() → {this}

Calculate the cube root of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

clone() → {this}

Creates a copy of the same type as this complex instance. Although it's unnecessary given a Complex object is already immutable.
Source:
Returns:
A new complex object with the same real and imaginary values as this instance.
Type
this

compare(a, b) → {number}

Callback for comparing 2 complex numbers by their real & imaginary parts.
Parameters:
Name Type Description
a Complex The first complex number to compare.
b Cobj The second complex number to compare.
Source:
Returns:
-1 if a < b, 0 if a == b, or +1 if a > b.
Type
number

compareTo(z) → {number}

This method compares this complex number with another. The main purpose of this is to define an appropriate sort order. Returns: Zero if the numbers are the same when using the equals method. Negative if considered less than z. Positive if considered larger than z.
Parameters:
Name Type Description
z Cobj the complex number to compare with.
Source:
Returns:
-1, 0 or +1
Type
number

conj() → {this}

Calculate the conjugate of this complex number.
Source:
Returns:
A new complex number representing the conjugate.
Type
this

cos() → {this}

Calculate the cosine of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

cosec() → {this}

Calculate the cosecant of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

cosech() → {this}

Calculate the hyperbolic cosecant of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

cosh() → {this}

Calculate the hyperbolic cosine of this complex number.
Source:
Returns:
A new complex number representing the result.
Type
this

cot() → {this}

Returns the cotangent of this complex number.
Source:
Returns:
The cotangent of this complex number.
Type
this

coth() → {this}

Returns the hyperbolic cotangent of this complex number.
Source:
Returns:
The hyperbolic cotangent of this complex number.
Type
this

cubed() → {this}

Returns the cube of this complex number.
Source:
Returns:
The cube of this complex number.
Type
this

div(n) → {this}

Divides this complex number by another complex number or a scalar.
Parameters:
Name Type Description
n Cobj | number The divisor.
Source:
Returns:
The quotient of the division.
Type
this

equals(z, epsilonopt) → {boolean}

Checks if this complex number is equal to another complex number within a given tolerance.
Parameters:
Name Type Attributes Default Description
z Cobj The other complex number to compare with.
epsilon number <optional>
Complex.epsilon The tolerance for equality.
Source:
Returns:
True if the two numbers are equal within the given tolerance, false otherwise.
Type
boolean

exp() → {this}

Returns the exponential of this complex number.
Source:
Returns:
The exponential of this complex number.
Type
this

filterRealRoots(z, epsilonopt, …_args) → {Array.<Cinst.<C>>}

Given an array of complex numbers return a new array containing a clone of those that represent real numbers. The original array is unchanged.
This:
Parameters:
Name Type Attributes Default Description
z Iterable.<Complex> The original array or iterable.
epsilon number <optional>
Complex.epsilon Max diffference allowed.
_args * <repeatable>
Extended parameters.
Source:
Returns:
Array of Complex representing real numbers.
Type
Array.<Cinst.<C>>

fromPolar(mod, rad, …_args) → {Cinst.<C>}

Return a complex number given polar coordinates.
This:
Parameters:
Name Type Attributes Description
mod number The length of the complex number.
rad number The angle subtended by the number.
_args * <repeatable>
Extended parameters.
Source:
Returns:
Complex of given length & orientation.
Type
Cinst.<C>

fromRI(reopt, imopt, …_args) → {Cinst.<C>}

Return a complex number given values for the real & imaginary parts.
This:
Parameters:
Name Type Attributes Default Description
re number <optional>
0 The real part.
im number <optional>
0 The imaginary part.
_args * <repeatable>
Extended parameters.
Source:
Returns:
The complex number of given real & imaginary parts.
Type
Cinst.<C>

fromRandom(modopt, …_args) → {Cinst.<C>}

Return a complex number of a given size but random orientation.
This:
Parameters:
Name Type Attributes Default Description
mod number <optional>
1 The length of the complex number.
_args * <repeatable>
Extended parameters.
Source:
Returns:
Complex of given length & random orientation.
Type
Cinst.<C>

fromZ(z, …_args) → {Cinst.<C>}

Return a new complex number using given object's props real & imag.
This:
Parameters:
Name Type Attributes Description
z Cobj The Complex object to copy from.
_args * <repeatable>
Extended parameters.
Source:
Returns:
Duplicate of the given Complex object.
Type
Cinst.<C>

half() → {this}

Returns the half (divided by 2) of this complex number.
Source:
Returns:
Half of this complex number.
Type
this

hashCode(hashopt) → {number}

Generates a hashcode for this complex number.
Parameters:
Name Type Attributes Default Description
hash number <optional>
17 Optional initial seed for the hashcode.
Source:
Returns:
The hashcode for this complex number.
Type
number

isComplex(c)

Check if a function is a Complex datatype constructor.
Parameters:
Name Type Description
c Cvoid.<C> The constructor function to check.
Source:
Returns:

isReal(epsilonopt) → {boolean}

Checks if this complex number is real within a given tolerance.
Parameters:
Name Type Attributes Default Description
epsilon number <optional>
Complex.epsilon The tolerance for checking if the imaginary part is zero.
Source:
Returns:
True if the imaginary part is zero within the given tolerance, false otherwise.
Type
boolean

isZero(epsilonopt) → {boolean}

Checks if this complex number is zero within a given tolerance.
Parameters:
Name Type Attributes Default Description
epsilon number <optional>
Complex.epsilon The tolerance for checking if both the real and imaginary parts are zero.
Source:
Returns:
True if both the real and imaginary parts are zero within the given tolerance, false otherwise.
Type
boolean

log() → {this}

Returns the natural logarithm of this complex number.
Source:
Returns:
The natural logarithm of this complex number.
Type
this

mult(n) → {this}

Multiplies this complex number by another complex number or a scalar.
Parameters:
Name Type Description
n Cobj | number The multiplicand.
Source:
Returns:
The product of the multiplication.
Type
this

negate() → {this}

Returns the negation of this complex number.
Source:
Returns:
The negation of this complex number.
Type
this

norm() → {this}

Returns the normalization of this complex number.
Source:
Returns:
The normalization of this complex number.
Type
this

pow(n) → {this}

Returns the power of this complex number raised to another complex number or a scalar.
Parameters:
Name Type Description
n Cobj | number The exponent.
Source:
Returns:
Power of this complex number raised to given exponent.
Type
this

print(precisionopt) → {this}

Prints this complex number to the console.
Parameters:
Name Type Attributes Default Description
precision number <optional>
16 Number of significant digits to display.
Source:
Returns:
This complex number.
Type
this

removeDuplicates(z, epsilonopt) → {Array.<I>}

If the original array contains more than 1 element the new array is returned with duplicates removed leaving just unique vales. In all cases a clone is returned and the original array is unchanged.
Parameters:
Name Type Attributes Default Description
z Iterable.<I> The original array or iterable.
epsilon number <optional>
Complex.epsilon Max diffference allowed.
Source:
Returns:
A new array with duplicates removed.
Type
Array.<I>

resetCaches() → {this}

Resets to default values both #hashCode & #$ internal caches.
Source:
Returns:
This complex number.
Type
this

roots(nopt) → {Array.<this>}

Returns the nth roots of this complex number (min 1).
Parameters:
Name Type Attributes Default Description
n number <optional>
1 The degree of the roots.
Source:
Returns:
An array containing the nth roots of this complex number.
Type
Array.<this>

sin() → {this}

Returns the sine of this complex number.
Source:
Returns:
The sine of this complex number.
Type
this

sinh() → {this}

Returns the hyperbolic sine of this complex number.
Source:
Returns:
The hyperbolic sine of this complex number.
Type
this

sort(z, sortopt) → {Array.<I>}

Returns a new array with the elements sorted by their real value. Numbers w/ same real value are then sorted by their imaginary value. The original array or iterable is unchanged.
Parameters:
Name Type Attributes Default Description
z Iterable.<I> The original array or iterable.
sort Compare <optional>
Complex.compare The sorting callback.
Source:
Returns:
A new sorted array.
Type
Array.<I>

sqrt() → {this}

Returns the square root of this complex number.
Source:
Returns:
The square root of this complex number.
Type
this

squared() → {this}

Returns the square of this complex number.
Source:
Returns:
The square of this complex number.
Type
this

sub(n) → {this}

Subtracts another complex or a real number from this complex number.
Parameters:
Name Type Description
n Cobj | number The subtrahend.
Source:
Returns:
The difference between the two numbers.
Type
this

tan() → {this}

Returns the tangent of this complex number.
Source:
Returns:
The tangent of this complex number.
Type
this

tanh() → {this}

Returns the hyperbolic tangent of this complex number.
Source:
Returns:
The hyperbolic tangent of this complex number.
Type
this

toDeg(rad) → {number}

Convert an angle in radians to degrees.
Parameters:
Name Type Description
rad number The angle in radians.
Source:
Returns:
The angle in degrees.
Type
number

toRad(deg) → {number}

Convert an angle in degrees to radians.
Parameters:
Name Type Description
deg number The angle in degrees.
Source:
Returns:
The angle in radians.
Type
number

toString() → {string}

Returns a string representation of this complex number.
Source:
Returns:
A string representation of this complex number.
Type
string

Type Definitions

Cinst

A generic type representing an instance of a constructor `Complex`.
Type:
  • InstanceType.<C>
Source:

Cobj

An object representing a complex number with real and imaginary parts.
Type:
  • Object
Source:

Compare(a, b) → {number}

Type of callback Complex.compare().
Parameters:
Name Type Description
a Complex The first complex number to compare.
b Cobj The second complex number to compare.
Source:
Returns:
-1 if a < b, 0 if a == b, or +1 if a > b.
Type
number

Ctor

A generic type representing a `Complex` constructor.
Type:
  • C
Source:

Cvoid

A union type representing either a constructor `Complex`, an object, or void. Used to hint that a static method can also be invoked "bare".
Type:
  • Ctor.<C> | Object | void
Source:

Newable()

A constructor type that can be instantiated with the `new` keyword.
Source:

TC(reopt, imopt)

A constructor for typeof Complex.
Parameters:
Name Type Attributes Default Description
re number <optional>
0 The real part of the complex number.
im number <optional>
0 The imaginary part of the complex number.
Source:

Typed

A generic type representing a TypedArray.
Type:
  • T
Source:

TypedArray

A union type representing all possible TypedArrays.
Type:
  • Int8Array | Uint8Array | Uint8ClampedArray | Int16Array | Uint16Array | Int32Array | Uint32Array | Float32Array | Float64Array | BigInt64Array | BigUint64Array
Source: