Members
epsilon
Get the default maximum difference allowed when testing complex numbers.
- Source:
epsilon
Set the default maximum difference allowed when testing complex numbers.
- Source:
Methods
$(precisionopt, $opt) → {string}
Returns a string representation of this complex number.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
precision |
number |
<optional> |
16 | Number of significant digits to display. |
$ |
string |
<optional> |
'' | Extra info to append to the string representation. |
- Source:
Returns:
A string representation of this complex number.
- Type
- string
(protected) _ctor(c) → {N}
Get input constructor c if typeof Complex; or fallback to Complex.
Parameters:
Name | Type | Description |
---|---|---|
c |
Cvoid.<C> | The constructor function to verify. |
- Source:
Returns:
Param c if type Complex; otherwise a Complex constructor.
- Type
- N
(protected) _new(c, …args) → {Cinst.<C>}
Create a new instance of a given Complex constructor function.
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
c |
Cvoid.<C> | An existing Complex constructor. | |
args |
* |
<repeatable> |
Real & imaginary number parts. |
- Source:
Returns:
A new instance of a complex number.
- Type
- Cinst.<C>
abs() → {number}
Compute the absolute value (modulus or magnitude) of this complex number.
- Source:
Returns:
The absolute length value of this complex number.
- Type
- number
abs_squared() → {number}
Compute the squared absolute value of this complex number.
- Source:
Returns:
The squared absolute value of this complex number.
- Type
- number
acos() → {this}
Calculate the inverse cosine of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
acosh() → {this}
Calculate the inverse hyperbolic cosine of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
add(n) → {this}
Add another complex number or a real number to this complex number.
Parameters:
Name | Type | Description |
---|---|---|
n |
Cobj | number | The complex or real number to add. |
- Source:
Returns:
A new complex number representing the sum.
- Type
- this
arg() → {number}
Calculate the argument (phase) of this complex number in radians.
- Source:
Returns:
The argument of this complex number in radians.
- Type
- number
arrClone(arr)
Clones an Array, a TypedArray or an Iterable object
as an Array or TypedArray of same datatype.
Parameters:
Name | Type | Description |
---|---|---|
arr |
T | Iterable.<A> | Array, TypedArray or Iterable to clone. |
- Source:
asin() → {this}
Calculate the inverse sine of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
asinh() → {this}
Calculate the inverse hyperbolic sine of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
atan() → {this}
Calculate the inverse tangent of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
atanh() → {this}
Calculate the inverse hyperbolic tangent of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
cbrt() → {this}
Calculate the cube root of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
clone() → {this}
Creates a copy of the same type as this complex instance.
Although it's unnecessary given a Complex object is already immutable.
- Source:
Returns:
A new complex object with the same real and imaginary
values as this instance.
- Type
- this
compare(a, b) → {number}
Callback for comparing 2 complex numbers by their real & imaginary parts.
Parameters:
Name | Type | Description |
---|---|---|
a |
Complex | The first complex number to compare. |
b |
Cobj | The second complex number to compare. |
- Source:
Returns:
-1 if a < b, 0 if a == b, or +1 if a > b.
- Type
- number
compareTo(z) → {number}
This method compares this complex number with another.
The main purpose of this is to define an appropriate sort order.
Returns:
Zero if the numbers are the same when using the equals method.
Negative if considered less than z.
Positive if considered larger than z.
Parameters:
Name | Type | Description |
---|---|---|
z |
Cobj | the complex number to compare with. |
- Source:
Returns:
-1, 0 or +1
- Type
- number
conj() → {this}
Calculate the conjugate of this complex number.
- Source:
Returns:
A new complex number representing the conjugate.
- Type
- this
cos() → {this}
Calculate the cosine of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
cosec() → {this}
Calculate the cosecant of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
cosech() → {this}
Calculate the hyperbolic cosecant of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
cosh() → {this}
Calculate the hyperbolic cosine of this complex number.
- Source:
Returns:
A new complex number representing the result.
- Type
- this
cot() → {this}
Returns the cotangent of this complex number.
- Source:
Returns:
The cotangent of this complex number.
- Type
- this
coth() → {this}
Returns the hyperbolic cotangent of this complex number.
- Source:
Returns:
The hyperbolic cotangent of this complex number.
- Type
- this
cubed() → {this}
Returns the cube of this complex number.
- Source:
Returns:
The cube of this complex number.
- Type
- this
div(n) → {this}
Divides this complex number by another complex number or a scalar.
Parameters:
Name | Type | Description |
---|---|---|
n |
Cobj | number | The divisor. |
- Source:
Returns:
The quotient of the division.
- Type
- this
equals(z, epsilonopt) → {boolean}
Checks if this complex number is equal to another complex number within
a given tolerance.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
z |
Cobj | The other complex number to compare with. | ||
epsilon |
number |
<optional> |
Complex.epsilon | The tolerance for equality. |
- Source:
Returns:
True if the two numbers are equal within the given
tolerance, false otherwise.
- Type
- boolean
exp() → {this}
Returns the exponential of this complex number.
- Source:
Returns:
The exponential of this complex number.
- Type
- this
filterRealRoots(z, epsilonopt, …_args) → {Array.<Cinst.<C>>}
Given an array of complex numbers return a new array containing a clone
of those that represent real numbers. The original array is unchanged.
This:
- {Cvoid.<C>}
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
z |
Iterable.<Complex> | The original array or iterable. | ||
epsilon |
number |
<optional> |
Complex.epsilon | Max diffference allowed. |
_args |
* |
<repeatable> |
Extended parameters. |
- Source:
Returns:
Array of Complex representing real numbers.
- Type
- Array.<Cinst.<C>>
fromPolar(mod, rad, …_args) → {Cinst.<C>}
Return a complex number given polar coordinates.
This:
- {Cvoid.<C>}
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
mod |
number | The length of the complex number. | |
rad |
number | The angle subtended by the number. | |
_args |
* |
<repeatable> |
Extended parameters. |
- Source:
Returns:
Complex of given length & orientation.
- Type
- Cinst.<C>
fromRI(reopt, imopt, …_args) → {Cinst.<C>}
Return a complex number given values for the real & imaginary parts.
This:
- {Cvoid.<C>}
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
re |
number |
<optional> |
0 | The real part. |
im |
number |
<optional> |
0 | The imaginary part. |
_args |
* |
<repeatable> |
Extended parameters. |
- Source:
Returns:
The complex number of given real & imaginary parts.
- Type
- Cinst.<C>
fromRandom(modopt, …_args) → {Cinst.<C>}
Return a complex number of a given size but random orientation.
This:
- {Cvoid.<C>}
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
mod |
number |
<optional> |
1 | The length of the complex number. |
_args |
* |
<repeatable> |
Extended parameters. |
- Source:
Returns:
Complex of given length & random orientation.
- Type
- Cinst.<C>
fromZ(z, …_args) → {Cinst.<C>}
Return a new complex number using given object's props real & imag.
This:
- {Cvoid.<C>}
Parameters:
Name | Type | Attributes | Description |
---|---|---|---|
z |
Cobj | The Complex object to copy from. | |
_args |
* |
<repeatable> |
Extended parameters. |
- Source:
Returns:
Duplicate of the given Complex object.
- Type
- Cinst.<C>
half() → {this}
Returns the half (divided by 2) of this complex number.
- Source:
Returns:
Half of this complex number.
- Type
- this
hashCode(hashopt) → {number}
Generates a hashcode for this complex number.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
hash |
number |
<optional> |
17 | Optional initial seed for the hashcode. |
- Source:
Returns:
The hashcode for this complex number.
- Type
- number
isComplex(c)
Check if a function is a Complex datatype constructor.
Parameters:
Name | Type | Description |
---|---|---|
c |
Cvoid.<C> | The constructor function to check. |
- Source:
Returns:
isReal(epsilonopt) → {boolean}
Checks if this complex number is real within a given tolerance.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
epsilon |
number |
<optional> |
Complex.epsilon | The tolerance for checking if the imaginary part is zero. |
- Source:
Returns:
True if the imaginary part is zero within the given
tolerance, false otherwise.
- Type
- boolean
isZero(epsilonopt) → {boolean}
Checks if this complex number is zero within a given tolerance.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
epsilon |
number |
<optional> |
Complex.epsilon | The tolerance for checking if both the real and imaginary parts are zero. |
- Source:
Returns:
True if both the real and imaginary parts are zero
within the given tolerance, false otherwise.
- Type
- boolean
log() → {this}
Returns the natural logarithm of this complex number.
- Source:
Returns:
The natural logarithm of this complex number.
- Type
- this
mult(n) → {this}
Multiplies this complex number by another complex number or a scalar.
Parameters:
Name | Type | Description |
---|---|---|
n |
Cobj | number | The multiplicand. |
- Source:
Returns:
The product of the multiplication.
- Type
- this
negate() → {this}
Returns the negation of this complex number.
- Source:
Returns:
The negation of this complex number.
- Type
- this
norm() → {this}
Returns the normalization of this complex number.
- Source:
Returns:
The normalization of this complex number.
- Type
- this
pow(n) → {this}
Returns the power of this complex number raised to another complex
number or a scalar.
Parameters:
Name | Type | Description |
---|---|---|
n |
Cobj | number | The exponent. |
- Source:
Returns:
Power of this complex number raised to given exponent.
- Type
- this
print(precisionopt) → {this}
Prints this complex number to the console.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
precision |
number |
<optional> |
16 | Number of significant digits to display. |
- Source:
Returns:
This complex number.
- Type
- this
removeDuplicates(z, epsilonopt) → {Array.<I>}
If the original array contains more than 1 element the new array is
returned with duplicates removed leaving just unique vales.
In all cases a clone is returned and the original array is unchanged.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
z |
Iterable.<I> | The original array or iterable. | ||
epsilon |
number |
<optional> |
Complex.epsilon | Max diffference allowed. |
- Source:
Returns:
A new array with duplicates removed.
- Type
- Array.<I>
resetCaches() → {this}
Resets to default values both #hashCode & #$ internal caches.
- Source:
Returns:
This complex number.
- Type
- this
roots(nopt) → {Array.<this>}
Returns the nth roots of this complex number (min 1).
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
n |
number |
<optional> |
1 | The degree of the roots. |
- Source:
Returns:
An array containing the nth roots of this
complex number.
- Type
- Array.<this>
sin() → {this}
Returns the sine of this complex number.
- Source:
Returns:
The sine of this complex number.
- Type
- this
sinh() → {this}
Returns the hyperbolic sine of this complex number.
- Source:
Returns:
The hyperbolic sine of this complex number.
- Type
- this
sort(z, sortopt) → {Array.<I>}
Returns a new array with the elements sorted by their real value.
Numbers w/ same real value are then sorted by their imaginary value.
The original array or iterable is unchanged.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
z |
Iterable.<I> | The original array or iterable. | ||
sort |
Compare |
<optional> |
Complex.compare | The sorting callback. |
- Source:
Returns:
A new sorted array.
- Type
- Array.<I>
sqrt() → {this}
Returns the square root of this complex number.
- Source:
Returns:
The square root of this complex number.
- Type
- this
squared() → {this}
Returns the square of this complex number.
- Source:
Returns:
The square of this complex number.
- Type
- this
sub(n) → {this}
Subtracts another complex or a real number from this complex number.
Parameters:
Name | Type | Description |
---|---|---|
n |
Cobj | number | The subtrahend. |
- Source:
Returns:
The difference between the two numbers.
- Type
- this
tan() → {this}
Returns the tangent of this complex number.
- Source:
Returns:
The tangent of this complex number.
- Type
- this
tanh() → {this}
Returns the hyperbolic tangent of this complex number.
- Source:
Returns:
The hyperbolic tangent of this complex number.
- Type
- this
toDeg(rad) → {number}
Convert an angle in radians to degrees.
Parameters:
Name | Type | Description |
---|---|---|
rad |
number | The angle in radians. |
- Source:
Returns:
The angle in degrees.
- Type
- number
toRad(deg) → {number}
Convert an angle in degrees to radians.
Parameters:
Name | Type | Description |
---|---|---|
deg |
number | The angle in degrees. |
- Source:
Returns:
The angle in radians.
- Type
- number
toString() → {string}
Returns a string representation of this complex number.
- Source:
Returns:
A string representation of this complex number.
- Type
- string
Type Definitions
Cinst
A generic type representing an instance of a constructor `Complex`.
Type:
- InstanceType.<C>
- Source:
Cobj
An object representing a complex number with real and imaginary parts.
Type:
- Object
- Source:
Compare(a, b) → {number}
Type of callback Complex.compare().
Parameters:
Name | Type | Description |
---|---|---|
a |
Complex | The first complex number to compare. |
b |
Cobj | The second complex number to compare. |
- Source:
Returns:
-1 if a < b, 0 if a == b, or +1 if a > b.
- Type
- number
Ctor
A generic type representing a `Complex` constructor.
Type:
- C
- Source:
Cvoid
A union type representing either a constructor `Complex`, an object, or void.
Used to hint that a static method can also be invoked "bare".
Type:
- Ctor.<C> | Object | void
- Source:
Newable()
A constructor type that can be instantiated with the `new` keyword.
- Source:
TC(reopt, imopt)
A constructor for typeof Complex.
Parameters:
Name | Type | Attributes | Default | Description |
---|---|---|---|---|
re |
number |
<optional> |
0 | The real part of the complex number. |
im |
number |
<optional> |
0 | The imaginary part of the complex number. |
- Source:
Typed
A generic type representing a TypedArray.
Type:
- T
- Source:
TypedArray
A union type representing all possible TypedArrays.
Type:
- Int8Array | Uint8Array | Uint8ClampedArray | Int16Array | Uint16Array | Int32Array | Uint32Array | Float32Array | Float64Array | BigInt64Array | BigUint64Array
- Source: