Class default

An immutable complex number class with real and imaginary parts.

Name

Complex

Hierarchy

  • default

Constructors

  • Create a new instance of the Complex class.

    Parameters

    • Optional re: number = 0

      The real part of the complex number.

      Optional
    • Optional im: number = 0

      The imaginary part of the complex number.

      Optional

    Returns default

Properties

#$: null | string = null

The cached string representation for this complex number.

#hashCode: null | number = null

The cached hashcode for this complex number.

__proto__: default

The prototype object of this instance.

constructor: Newable<default> & typeof default

The constructor function for this instance.

imag: number

The imaginary part of the complex number.

Const

Member

mod: (() => number)

Type declaration

    • (): number
    • Compute the absolute value (modulus or magnitude) of this complex number.

      Returns number

      The absolute length value of this complex number.

      Method

      mod

      Memberof

      Complex

      Instance

      Description

      Alias of Complex::abs().

modSq: (() => number)

Type declaration

    • (): number
    • Compute the squared absolute value of this complex number.

      Returns number

      The squared absolute value of this complex number.

      Method

      modSq

      Memberof

      Complex

      Instance

      Description

      Alias of Complex::abs_squared().

mul: ((n) => default)

Type declaration

    • (n): default
    • Multiplies this complex number by another complex number or a scalar.

      Parameters

      • n: number | Cobj

        The multiplicand.

      Returns default

      The product of the multiplication.

      Method

      mul

      Memberof

      Complex

      Instance

      Description

      Alias of Complex::mult().

real: number

The real part of the complex number.

Const

Member

#epsilon: number = 1E-8

The default maximum difference allowed when testing complex numbers.

Default


DEG_TO_RAD: 0.017453292519943295 = ...

The conversion factor from degrees to radians (Math.PI / 180).

Static

Const

PI: 3.141592653589793 = ...

Pi. Ratio of the circumference of a circle to its diameter.

Static

Const

RAD_TO_DEG: 57.29577951308232 = ...

The conversion factor from radians to degrees (180 / Math.PI).

Static

Const

TAU: 6.283185307179586 = ...

Tau. Ratio of the circumference of a circle to its radius (2pi).

Static

Const

ZERO: default = ...

A complex number representing zero.

Static

Const

_0_1i: default = ...

A complex number representing 0 + 1i.

Static

Const

_0_1i_neg: default = ...

A complex number representing 0 - 1i.

Static

Const

_1_0i: default = ...

A complex number representing 1 + 0i.

Static

Const

_1_0i_neg: default = ...

A complex number representing -1 + 0i.

Static

Const

_IMMUTABLE: Readonly<{
    imag: Readonly<{
        writable: false;
    }>;
    real: Readonly<{
        writable: false;
    }>;
}> = ...

Map of property descriptors that define the real & imag properties of a Complex object as read-only; so instances of class Complex are immutable.

Type declaration

  • imag: Readonly<{
        writable: false;
    }>
  • real: Readonly<{
        writable: false;
    }>

Static

Const

_METHOD: "fromRI" = 'fromRI'

Static property's name to check if some constructor is of type Complex.

Static

Const

_READONLY: Readonly<{
    writable: false;
}> = ...

A property descriptor object that defines a property as read-only by setting its attribute writable to false.

Type declaration

  • writable: false

Static

Const

_TYPED: "BYTES_PER_ELEMENT" = 'BYTES_PER_ELEMENT'

Property's name to check if an object is a TypedArray.

Static

Const

_hashFBuf: Float64Array = ...

A Float64Array buffer used to store the binary representation of the real or imaginary part of a complex number for hashcode computation.

Static

_hashIBuf: Uint8Array = ...

A Uint8Array buffer view that shares the same memory block as _hashFBuf, used to access the individual bytes of the real or imaginary part of a complex number for hashcode computation.

Static

Accessors

  • get [toStringTag](): string
  • Returns the name of the constructor of this complex number.

    Returns string

    The name of the constructor of this complex number.

  • get epsilon(): number
  • Get the default maximum difference allowed when testing complex numbers.

    Returns number

    The maximum difference allowed.

    Static

  • set epsilon(norm): void
  • Set the default maximum difference allowed when testing complex numbers.

    Parameters

    • norm: number

      The max diff allowed. Must be > 0 and < 1.

    Returns void

    Static

    Throws

    If epsilon to be set is <= 0 or >=1.

Methods

  • Returns a string representation of this complex number.

    Parameters

    • Optional precision: number = 0

      Number of significant digits to display.

      Optional
    • Optional $: string = ''

      Extra info to append to the string representation.

      Optional

    Returns string

    A string representation of this complex number.

  • Gets an iterator for the real and imaginary parts of this complex number.

    Returns IterableIterator<number>

    An iterator for the real and imaginary parts of this complex number.

    Generator

    Yield

  • Converts this complex number to a primitive value.

    Parameters

    • hint: "string" | "number" | "default"

      Type hint for conversion.

    Returns string | number

    The primitive value of this complex number.

  • Compute the absolute value (modulus or magnitude) of this complex number.

    Returns number

    The absolute length value of this complex number.

  • Compute the squared absolute value of this complex number.

    Returns number

    The squared absolute value of this complex number.

  • Calculate the inverse cosine of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the inverse hyperbolic cosine of this complex number.

    Returns default

    A new complex number representing the result.

  • Add another complex number or a real number to this complex number.

    Parameters

    • n: number | Cobj

      The complex or real number to add.

    Returns default

    A new complex number representing the sum.

  • Calculate the argument (phase) of this complex number in radians.

    Returns number

    The argument of this complex number in radians.

  • Calculate the inverse sine of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the inverse hyperbolic sine of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the inverse tangent of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the inverse hyperbolic tangent of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the cube root of this complex number.

    Returns default

    A new complex number representing the result.

  • Creates a copy of the same type as this complex instance. Although it's unnecessary given a Complex object is already immutable.

    Returns default

    A new complex object with the same real and imaginary values as this instance.

  • This method compares this complex number with another. The main purpose of this is to define an appropriate sort order. Returns: Zero if the numbers are the same when using the equals method. Negative if considered less than z. Positive if considered larger than z.

    Parameters

    • z: Cobj

      the complex number to compare with.

    Returns number

    -1, 0 or +1

  • Calculate the conjugate of this complex number.

    Returns default

    A new complex number representing the conjugate.

  • Calculate the cosine of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the cosecant of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the hyperbolic cosecant of this complex number.

    Returns default

    A new complex number representing the result.

  • Calculate the hyperbolic cosine of this complex number.

    Returns default

    A new complex number representing the result.

  • Returns the hyperbolic cotangent of this complex number.

    Returns default

    The hyperbolic cotangent of this complex number.

  • Divides this complex number by another complex number or a scalar.

    Parameters

    • n: number | Cobj

      The divisor.

    Returns default

    The quotient of the division.

  • Checks if this complex number is equal to another complex number within a given tolerance.

    Parameters

    • z: Cobj

      The other complex number to compare with.

    • Optional epsilon: number = Complex.#epsilon

      The tolerance for equality.

      Optional

    Returns boolean

    True if the two numbers are equal within the given tolerance, false otherwise.

  • Returns the exponential of this complex number.

    Returns default

    The exponential of this complex number.

  • Generates a hashcode for this complex number.

    Parameters

    • Optional hash: number = 0

      Optional initial seed for the hashcode.

      Optional

    Returns number

    The hashcode for this complex number.

  • Checks if this complex number is real within a given tolerance.

    Parameters

    • Optional epsilon: number = Complex.#epsilon

      The tolerance for checking if the imaginary part is zero.

      Optional

    Returns boolean

    True if the imaginary part is zero within the given tolerance, false otherwise.

  • Checks if this complex number is zero within a given tolerance.

    Parameters

    • Optional epsilon: number = Complex.#epsilon

      The tolerance for checking if both the real and imaginary parts are zero.

      Optional

    Returns boolean

    True if both the real and imaginary parts are zero within the given tolerance, false otherwise.

  • Returns the natural logarithm of this complex number.

    Returns default

    The natural logarithm of this complex number.

  • Multiplies this complex number by another complex number or a scalar.

    Parameters

    • n: number | Cobj

      The multiplicand.

    Returns default

    The product of the multiplication.

  • Returns the normalization of this complex number.

    Returns default

    The normalization of this complex number.

  • Returns the power of this complex number raised to another complex number or a scalar.

    Parameters

    • n: number | Cobj

      The exponent.

    Returns default

    Power of this complex number raised to given exponent.

  • Prints this complex number to the console.

    Parameters

    • Optional precision: number

      Number of significant digits to display.

      Optional

    Returns default

    This complex number.

    Chainable

  • Resets to default values both #hashCode & #$ internal caches.

    Returns default

    This complex number.

    Chainable

  • Returns the nth roots of this complex number (min 1).

    Parameters

    • Optional n: number = 1

      The degree of the roots.

      Optional

    Returns default[]

    An array containing the nth roots of this complex number.

  • Returns the hyperbolic sine of this complex number.

    Returns default

    The hyperbolic sine of this complex number.

  • Returns the square root of this complex number.

    Returns default

    The square root of this complex number.

  • Subtracts another complex or a real number from this complex number.

    Parameters

    • n: number | Cobj

      The subtrahend.

    Returns default

    The difference between the two numbers.

  • Returns the hyperbolic tangent of this complex number.

    Returns default

    The hyperbolic tangent of this complex number.

  • Returns a string representation of this complex number.

    Returns string

    A string representation of this complex number.

  • Protected

    Get input constructor c if typeof Complex; or fallback to Complex.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    • N extends Newable<InstanceType<C>>

      Constructor for typeof Complex.

    Parameters

    • c: Cvoid<C>

      The constructor function to verify.

    Returns N

    Param c if type Complex; otherwise a Complex constructor.

    Static

  • Protected

    Create a new instance of a given Complex constructor function.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • c: Cvoid<C>

      An existing Complex constructor.

    • Rest ...args: any

      Real & imaginary number parts.

      Rest

    Returns InstanceType<C>

    A new instance of a complex number.

    Static

  • Type Parameters

    • T extends TypedArray

      Specific type of the passed TypedArray.

    Parameters

    • arr: T

      The TypedArray to clone.

    Returns T

    A new TypedArray of same datatype containing the elements of the input TypedArray.

  • Type Parameters

    • A

      The type of elements in the Array or Iterable object.

    Parameters

    • arr: Iterable<A>

      The Array or Iterable object to clone.

    Returns A[]

    A new Array containing the elements of the input Array or Iterable object.

  • Callback for comparing 2 complex numbers by their real & imaginary parts.

    Parameters

    • a: default

      The first complex number to compare.

    • b: Cobj

      The second complex number to compare.

    Returns number

    -1 if a < b, 0 if a == b, or +1 if a > b.

    Static

  • Given an array of complex numbers return a new array containing a clone of those that represent real numbers. The original array is unchanged.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • Rest ...this: any
      Rest
    • z: Iterable<default> = Complex.#epsilon

      The original array or iterable.

    • Optional epsilon: number

      Max diffference allowed.

      Optional
    • Rest ..._args: any

      Extended parameters.

      Rest

    Returns InstanceType<C>[]

    Array of Complex representing real numbers.

    Static

  • Return a complex number given polar coordinates.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • Rest ...this: any
      Rest
    • mod: number

      The length of the complex number.

    • rad: number

      The angle subtended by the number.

    • Rest ..._args: any

      Extended parameters.

      Rest

    Returns InstanceType<C>

    Complex of given length & orientation.

    Static

  • Return a complex number given values for the real & imaginary parts.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • Rest ...this: any
      Rest
    • Optional re: number

      The real part.

      Optional
    • Optional im: number

      The imaginary part.

      Optional
    • Rest ..._args: any

      Extended parameters.

      Rest

    Returns InstanceType<C>

    The complex number of given real & imaginary parts.

    Static

  • Return a complex number of a given size but random orientation.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • Rest ...this: any = 1
      Rest
    • Optional mod: number

      The length of the complex number.

      Optional
    • Rest ..._args: any

      Extended parameters.

      Rest

    Returns InstanceType<C>

    Complex of given length & random orientation.

    Static

  • Return a new complex number using given object's props real & imag.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • Rest ...this: any
      Rest
    • __namedParameters: Cobj
    • Rest ..._args: any

      Extended parameters.

      Rest

    Returns InstanceType<C>

    Duplicate of the given Complex object.

    Static

  • Check if a function is a Complex datatype constructor.

    Type Parameters

    • C extends TC

      Extends typeof Complex.

    Parameters

    • c: Cvoid<C>

      The constructor function to check.

    Returns c is Newable<InstanceType<C>>

    True if param c is or inherits from Complex class.

    Static

  • If the original array contains more than 1 element the new array is returned with duplicates removed leaving just unique vales. In all cases a clone is returned and the original array is unchanged.

    Type Parameters

    • I extends default

      Instance of Complex type.

    Parameters

    • z: Iterable<I>

      The original array or iterable.

    • Optional epsilon: number = Complex.#epsilon

      Max diffference allowed.

      Optional

    Returns I[]

    A new array with duplicates removed.

    Static

  • Returns a new array with the elements sorted by their real value. Numbers w/ same real value are then sorted by their imaginary value. The original array or iterable is unchanged.

    Type Parameters

    • I extends default

      Instance of Complex type.

    Parameters

    • z: Iterable<I>

      The original array or iterable.

    • Optional sort: Compare = Complex.compare

      The sorting callback.

      Optional

    Returns I[]

    A new sorted array.

    Static

  • Convert an angle in radians to degrees.

    Parameters

    • rad: number

      The angle in radians.

    Returns number

    The angle in degrees.

    Static

  • Convert an angle in degrees to radians.

    Parameters

    • deg: number

      The angle in degrees.

    Returns number

    The angle in radians.

    Static

Generated using TypeDoc